

UCRL-MI-142491

Parallel FTP Performance
in a High-Bandwidth,
High-Latency WAN

Jason S. King

November 10, 2000

2

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

3

Background

Within the Accelerated Strategic Computing Initiative (ASCI) program, the Distance and Distributed
Computing program, or DisCom2, is charged with ensuring that Laboratory scientists have the best possible
access to computing resources no matter where those resources may be located. Network file transfer has
been identified as an important part of this effort. The three weapons labs, Lawrence Livermore, Sandia,
and Los Alamos, have been working for some time on plans for a secure, high-speed, low-latency Wide
Area Network (WAN) spanning the sites in Livermore, Albuquerque, and Los Alamos. The proposed file
transfer tool for this new network is the parallel file transfer protocol (FTP) client as distributed with the
High Performance Storage System (HPSS).

This tool was chosen because it is a mature code that has many of the desired capabilities identified by the
DisCom2 program. Among these capabilities are parallel file transfer, compatibility with HPSS, and
backward compatibility with “standard” FTP as specified by RFC 959.

Testing at LLNL in early September 2000 showed that, although the parallel FTP code meets the desired
capability requirements, its performance in the Local Area Network (LAN) is not quite optimal.
Examination of the architecture revealed that a large portion of the performance penalty is directly related
to the code’s support of the mover and pdata protocols needed to communicate with HPSS. These protocols
basically introduce a lock step for each block of data sent across the network. While this did not appear to
significantly reduce performance in the LAN, the higher latency found in the WAN would likely result in
greatly decreased performance. At least one of these two protocols will always remain necessary for
communication with HPSS. They are not, however, required when communicating between two non-HPSS
systems, for example, between ASCI White and an SGI visualization platform.

LLNL has demonstrated that, in the absence of HPSS, parallel file transfer can be accomplished with much
less overhead and higher performance, even in the LAN. A modification was made to the parallel FTP
client and server (non-HPSS server based on the public domain wuftpd code and parallel modifications
from M. Barnaby at Sandia) that essentially removed the mover and pdata protocols in favor of a much
simpler protocol with 16 bytes of overhead per parallel stripe, per file transfer, with no lock-step
mechanism.

Considering the importance of file transfer performance to the upcoming DisCom2 WAN, it was decided
that SC2000, held in early November, would provide a great opportunity for testing the two versions of
parallel FTP. For purposes of the discussion in the rest of this paper, the standard HPSS version of parallel
FTP, which includes the mover and pdata protocols, is referred to as the “PFTP-hpss,” while the modified
version is referred to as “PFTP-simple.”

4

SC2000 Network Topology

Source and sink hosts were identified that adequately represent the actual platforms in use on ASCI
networks today. Those hosts were an SGI Onyx2 located on the SC2000 show floor in Dallas and an IBM
Nighthawk-1 SP node located in Livermore. Each host was connected to the network with four Gigabit
Ethernet adapters. Each adapter was placed in a separate Virtual LAN (VLAN), and all traffic was carried
across a 2.5 Gb/s OC48c between Livermore and Dallas. The network topology is shown in Figure 1.

Figure 1. Network topology for testing two versions of parallel FTP.

Tests

The testing methodology was first to use the netperf benchmark tool (http://www.netperf.org) to establish a
performance baseline for the network between the source and sink. Because it does not perform disk I/O
and strictly measures memory-to-memory copies over TCP and UDP, netperf is a good tool for determining
maximum network performance between two hosts. Then, equipped with the knowledge of what was
theoretically possible on the network, we looked at how the two different parallel transfer methods
performed in comparison.

Iterations of netperf were used to determine the optimal TCP window size to tune the network for
maximum performance. With the hosts configured for maximum performance, each transfer method,
PFTP-hpss and PFTP-simple, was run through iterations of different parameters, including block sizes and
stripe widths. Packet traces of a typical transfer were generated for each method for additional analysis.

Results

The architecture of the network connecting LLNL to the SC2000 show floor was such that, to take full
advantage of the bandwidth available, it was necessary to have a minimum of four TCP streams, each
destined for a different subnet on the remote end. This allowed traffic to be spread across each of four

5

OC-12 ATM links. Since the round-trip delay was 50 ms and OC-12 bandwidth is 622 Mb/s, the bandwidth
delay product of this network is 3.88 MB. Under optimal conditions, the bandwidth delay product should
yield the optimal TCP window size, but in this case it did not. Increasing the TCP window size beyond
2 MB had an adverse effect on performance. Unfortunately, the results above 2 MB are not available, but
Figure 2 shows that performance plateaus at a 1.5 MB window size. It is believed the poor performance
beyond the 2 MB window is directly related to TCP’s slow start and congestion control algorithms.
Because this network would not run at full bandwidth without losing packets, anytime the TCP window
started to approach the network’s maximum speed, a packet was lost, TCP’s congestion control algorithm
activated, and performance declined. TCP appeared to take a very long time to reopen the window once
packet loss occurred.

Netperf Aggregate Throughput, 4 NICs, 1 Stream/NIC

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

256KB 512KB 1MB 1.5MB 2MB

TCP Window Size

M
B

/s

netperf

Figure 2. The netperf aggregate throughput performance.

Based upon the results shown in Figure 2, both hosts were configured with socket buffers of 2 MB for the
remainder of the tests. Figure 3 illustrates the performance of netperf and the two parallel FTP methods
when using 2 MB socket buffers. The performance of the PFTP-hpss method, in general, was half that of
the PFTP-simple method.

6

Parallel FTP, 4 NICs, Peak Throughput as a function of
pblocksize (optimal pwidth at each pblocksize)

0

10

20

30

40

50

60

70

80

90

100

131072 262144 524288 1048576

pblocksize in bytes

M
B

/s

PFTP (simple)
PFTP (hpss)
netperf

Figure 3. The throughput performance of netperf and the two parallel FTP methods.

Discussion

Figures 4 and 5 show why the performance of PFTP-hpss is sub-optimal. Figures 4 and 5 represent a one
second snapshot of throughput from one of four total streams. Figure 4 is a good illustration of the impact
that the mover protocol has in the WAN. Because PFTP-hpss operates in a lock-step fashion—sending a
mover protocol message, then awaiting the acknowledgement before sending data—large gaps are created
where throughput drops to zero. These gaps should be roughly the same size as the round-trip delay of
50 ms. Examination of the packet data bears this out.

Figure 5 shows the same data for PFTP-simple. Note that it also fluctuates greatly over time, but in a more
rapid fashion, and average throughput is roughly twice that of PFTP-hpss. The relatively small TCP
window used likely explains the rapid fluctuations. Because the chosen window size was small enough to
avoid packet loss, it does not allow the network to be fully utilized. Figure 5 seems to support this theory in
that slightly less than 50% of the total time shown on the graph is spent idling. Because 2 MB is roughly
52% of the optimal window size of 3.88 MB, we would expect to see approximately 48% of the time spent
idle.

7

Figure 4. PFTP-hpss, pwidth 4, pblocksize 256 KB.

Figure 5. PFTP-simple, pwidth 4, pblocksize 256 KB.

8

Conclusion

At the least, this work shows that packet loss in the WAN can severely limit throughput. It also shows that
there is great room for improvement in our chosen method of file transfer in the WAN and, at least for the
moment, that the largest performance gains in the WAN will likely come from work on the protocols in
use, rather than from work on disk or system I/O issues. We need protocols capable of high performance in
the WAN before we can expect to fully utilize increasingly high bit rate networks.

Acknowledgements

Special thanks to Bryan Lawver (LLNL) and to Helen Chen and Jim Brandt (SNL/CA) for all their work in
setting up this network and babysitting it through a hectic week at SC2000. Also, thanks to the many
people at SNL/NM who supplied the SGI and helped with administrative issues.

